1/5^2x-4=125

Simple and best practice solution for 1/5^2x-4=125 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5^2x-4=125 equation:



1/5^2x-4=125
We move all terms to the left:
1/5^2x-4-(125)=0
Domain of the equation: 5^2x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/5^2x-129=0
We multiply all the terms by the denominator
-129*5^2x+1=0
Wy multiply elements
-645x^2+1=0
a = -645; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-645)·1
Δ = 2580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2580}=\sqrt{4*645}=\sqrt{4}*\sqrt{645}=2\sqrt{645}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{645}}{2*-645}=\frac{0-2\sqrt{645}}{-1290} =-\frac{2\sqrt{645}}{-1290} =-\frac{\sqrt{645}}{-645} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{645}}{2*-645}=\frac{0+2\sqrt{645}}{-1290} =\frac{2\sqrt{645}}{-1290} =\frac{\sqrt{645}}{-645} $

See similar equations:

| 12x^2+3x=14 | | x²+2.5x-125=0 | | 3=10-2d | | 25=-16t^2-80t+121 | | 45.36x0.07=31752 | | A=20.7+h | | 13−​5x=48 | | 3x+37=7x+25 | | 5x=35​ | | X-10y=0 | | D=9/2(x-59) | | (x−3)(x+6)= | | (x−3)(x+6)=0 | | x²-20x+70=0 | | 4a+-7a=-15 | | 8(y+2)=4^8 | | 4x-25=×+14 | | 7(4-x)=27 | | 6*2x=48 | | 8=(1x)^2(2x) | | 2x*x=512 | | 2+8=2c | | 78x-52=13(6x-5 | | 2=8=2c | | 2+12x=16-38x | | 4x+20+120=180 | | 12 ( 7 − 6)=w | | (97-3x)+(69-5x)=180 | | 97-3x+69-5x=180 | | 950=16t^2+1500 | | 31x+3)+192=180 | | d=12(2)+14 |

Equations solver categories